4.6 Article

Deciphering the Role of Anions of Ionic Liquids in Modulating the Structure and Stability of ct-DNA in Aqueous Solutions

Journal

LANGMUIR
Volume 39, Issue 48, Pages 17318-17332

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.langmuir.3c02459

Keywords

-

Ask authors/readers for more resources

This study investigates the role of anions in stabilizing nucleic acids in ionic liquids (ILs). The results demonstrate that, in addition to cations, the chemical nature of anions plays a significant role in the interaction between ILs and DNA.
Stabilizing biomolecules under ambient conditions can be extremely beneficial for various biological applications. In this context, the utilization of ionic liquids (ILs) in enhancing the stability and preservation of nucleic acids in aqueous solutions is found to be promising. While the role of the cationic moiety of ILs in the said event has been thoroughly explored, the importance of the anionic moiety in ILs, if any, is rather poorly understood. Herein, we examine the function of anions of ILs in nucleic acid stabilization by examining the stability and structure of calf thymus-DNA (ct-DNA) in the presence of various ILs composed of a common 1-ethyl-3-methylimidazolium cations (Emim+) and different anions, which includes Cl-, Br-, NO3 , Ac , HSO4 and BF4 by employing various spectroscopic techniques as well as Molecular Dynamics (MD) simulation studies. Analysis of our data suggests that the chemical nature of anions including polarity, basicity, and hydrophilicity become an important factor in the overall DNA-IL interaction event. At lower concentrations, the interplay of intermolecular interaction between the IL anions with their respective cations and the solvent molecules becomes a very crucial factor in inducing their stabilizing effect on ct-DNA. However, at higher concentrations of ILs, the ct-DNA stabilization is additionally governed by specific-ion effect. MD simulation studies have also provided valuable insights into molecular-level understanding of the DNA-IL interaction event. Overall, the present study clearly demonstrated that along with the cationic moiety of ILs, the anions of ILs can play a significant role in deciding the stability of duplex DNA in aqueous solution. The findings of this study are expected to enhance our knowledge on understanding of IL-DNA interactions in a better manner and will be helpful in designing optimized IL systems for nucleic acid based applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available