4.7 Article

Triple physical cross-linking cellulose nanofibers-based poly(ionic liquid) hydrogel as wearable multifunctional sensors

Journal

CARBOHYDRATE POLYMERS
Volume 325, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.carbpol.2023.121572

Keywords

Cellulose nanofibers; Poly(ionic liquid) hydrogel; Triple physical cross-linking network; Multifunctional sensor; Comprehensive properties

Ask authors/readers for more resources

A novel triple physical cross-linking poly(ionic liquid) hydrogel was synthesized with excellent mechanical properties and other advantages. It was assembled as a multifunctional sensor to monitor joint motion, vocal cord vibration, tactile sensation, and body temperature in real time.
A novel triple physical cross-linking poly(ionic liquid) hydrogel, composed of poly(acrylamide-co-dodecyl methacrylate-co-1-vinyl-3-methyluracil-imidazolium chloride)/cellulose nanofibers-Ca2+ (PADV/CNFs-Ca2+), was synthesized through micellar-copolymerization followed by a solvent-soaked procedure. The synergistic interactions in polymer network (i.e. the hydrophobic association of dodecyl methacrylate moiety in surfactant micelles, the hydrogen bondings between imidazolium monomer segments and other monomer segments in polymers, and the ionic coordination between Ca2+ and -COO- on cellulose nanofibers surface) endowed the hydrogel with excellent mechanical properties, including high strength (754 kPa of tensile strength and 1905 kPa of compressive strength), outstanding stretchability (1963 %), elastic modulus (56.5 kPa) and remarkable mechanical durability (200 cycles with 500 % deformations and 100 cycles at 50 % compression strain). Besides, this hydrogel exhibited other advantages, such as satisfied conductivity (28.7 mS/cm), high strain/pressure/ temperature-sensitive behavior, precise and stable signal transmission, varying degrees of antibacterial activity, and biocompatibility. Owing to the exceptional comprehensive performance, the hydrogel was then assembled as a multifunctional sensor to monitor the joint motion, vocal cord vibration, tactile sensation and body temperature with remarkable sensitivity in real time. This work offered a new strategy for the fabrication of durable, biocompatible, antibacterial and conductive materials for wearable multifunctional electronic devices.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available