4.7 Article

Transformation kinetics of exogenous lead in an acidic soil during anoxic-oxic alteration: Important roles of phosphorus and organic matter

Journal

ENVIRONMENTAL POLLUTION
Volume 335, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.envpol.2023.122271

Keywords

HCl extracted phosphorus; Fulvic acid complex pb; Iron redox cycle; Immobilization; Flooding; Release

Ask authors/readers for more resources

This study investigates the transformation of lead (Pb) in acidic soil under alternating anoxic-oxic conditions using a kinetic model. The results suggest that under anoxic conditions, Pb is gradually transferred to fulvic complex, Fe-Mn oxides bound, and sulfides bound Pb, while under oxic conditions, the fulvic complex Pb further increases. Phosphorus plays a more important role than organic matter in Pb immobilization under anoxic conditions, while the phosphates, Fe-Mn oxides, and sulfides immobilized Pb is slowly released and then complexed by fulvic acids during the re-immobilization of dissolved organic matter in soil under oxic conditions.
Lead (Pb) can enter soil environment during flooding events such as surface runoff and intensive rainfall. However, the key transformation processes of exogenous Pb during anoxic-oxic alteration remain poorly understood particularly how phosphorus and organic matter contribute to Pb immobilization/release. Here, a kinetic model was established to investigate the Pb transformation in an acidic soil with two levels of Pb contamination under alternating anoxic-oxic conditions, based on the results of seven-step sequential extraction, dissolved organic carbon, sulfate, iron, phosphorus, and surface sites. Results showed that the potentially available Pb, including dissolved, exchangeable, and specifically adsorbed fractions, was gradually transferred to the fulvic complex, Fe-Mn oxides bound, and sulfides bound Pb after 40-day incubation under anoxic conditions, while the fulvic complex Pb further increased after 20-day incubation under oxic conditions. The concentration of phosphorus that was extracted by 0.5 M HCl or 0.03 M NH4F in 0.025 M HCl increased under anoxic conditions and decreased under oxic conditions. When Pb-binding to phosphorus is considered during kinetic modeling, the simulated results of Pb transformation suggest that phosphorus is more important than organic matter for Pb immobilization under anoxic conditions, while the phosphates, Fe-Mn oxides, and sulfides immobilized Pb is slowly released and then complexed by fulvic acids during the re-immobilization of dissolved organic matter in soil under oxic conditions. The model established with low Pb level has been successfully applied to describe the Pb transformation with high Pb level. This study provides a comprehensive understanding of the roles of phosphorus and organic matter in controlling Pb transformation in soil from kinetic modeling.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available