4.4 Article

Introducing the STREAC (Spike Train Response Classification) toolbox☆

Journal

JOURNAL OF NEUROSCIENCE METHODS
Volume 401, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.jneumeth.2023.110000

Keywords

Spike density function; Interspike interval function; Spike train; Optogenetics; Substantia nigra; Globus pallidus

Ask authors/readers for more resources

This work presents a toolbox that implements a methodology for automated classification of neural responses based on spike train recordings. The toolbox provides a user-friendly and efficient approach to detect various types of neuronal responses that may not be identified by traditional methods.
Background: This work presents a toolbox that implements methodology for automated classification of diverse neural responses to optogenetic stimulation or other changes in conditions, based on spike train recordings. New Method: The toolbox implements what we call the Spike Train Response Classification algorithm (STREAC), which compares measurements of activity during a baseline period with analogous measurements during a subsequent period to identify various responses that might result from an event such as introduction of a sustained stimulus. The analyzed response types span a variety of patterns involving distinct time courses of increased firing, or excitation, decreased firing, or inhibition, or combinations of these. Excitation (inhibition) is identified from a comparative analysis of the spike density function (interspike interval function) for the baseline period relative to the corresponding function for the response period. Results: The STReaC algorithm as implemented in this toolbox provides a user-friendly, tunable, objective methodology that can detect a variety of neuronal response types and associated subtleties. We demonstrate this with single-unit neural recordings of rodent substantia nigra pars reticulata (SNr) during optogenetic stimulation of the globus pallidus externa (GPe). Comparison with existing methods: In several examples, we illustrate how the toolbox classifies responses in situations in which traditional methods (spike counting and visual inspection) either fail to detect a response or provide a false positive. Conclusions: The STReaC toolbox provides a simple, efficient approach for classifying spike trains into a variety of response types defined relative to a period of baseline spiking.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available