4.7 Article

Characteristics and Diurnal Cycle of GPM Rainfall Estimates over the Central Amazon Region

Journal

REMOTE SENSING
Volume 8, Issue 7, Pages -

Publisher

MDPI
DOI: 10.3390/rs8070544

Keywords

satellite rainfall estimates; radar rainfall estimates; GPM; IMERG; GPROF; uncertainty quantification; GoAmazon

Funding

  1. National Council for Scientific and Technological Development (CNPq)
  2. Coordination for the Improvement of Higher Education Personnel (CAPES) Brazil
  3. Institutional Program of Overseas Sandwich Doctorate (PDSE) from CAPES [6836-15-1]
  4. CHUVA Project (FAPESP Grant) [2009/15235-8]

Ask authors/readers for more resources

Studies that investigate and evaluate the quality, limitations and uncertainties of satellite rainfall estimates are fundamental to assure the correct and successful use of these products in applications, such as climate studies, hydrological modeling and natural hazard monitoring. Over regions of the globe that lack in situ observations, such studies are only possible through intensive field measurement campaigns, which provide a range of high quality ground measurements, e.g., CHUVA (Cloud processes of tHe main precipitation systems in Brazil: A contribUtion to cloud resolVing modeling and to the GlobAl Precipitation Measurement) and GoAmazon (Observations and Modeling of the Green Ocean Amazon) over the Brazilian Amazon during 2014/2015. This study aims to assess the characteristics of Global Precipitation Measurement (GPM) satellite-based precipitation estimates in representing the diurnal cycle over the Brazilian Amazon. The Integrated Multi-satellitE Retrievals for Global Precipitation Measurement (IMERG) and the Goddard Profiling Algorithm-Version 2014 (GPROF2014) algorithms are evaluated against ground-based radar observations. Specifically, the S-band weather radar from the Amazon Protection National System (SIPAM), is first validated against the X-band CHUVA radar and then used as a reference to evaluate GPM precipitation. Results showed satisfactory agreement between S-band SIPAM radar and both IMERG and GPROF2014 algorithms. However, during the wet season, IMERG, which uses the GPROF2014 rainfall retrieval from the GPM Microwave Imager (GMI) sensor, significantly overestimates the frequency of heavy rainfall volumes around 00:00-04:00 UTC and 15:00-18:00 UTC. This overestimation is particularly evident over the Negro, Solimoes and Amazon rivers due to the poorly-calibrated algorithm over water surfaces. On the other hand, during the dry season, the IMERG product underestimates mean precipitation in comparison to the S-band SIPAM radar, mainly due to the fact that isolated convective rain cells in the afternoon are not detected by the satellite precipitation algorithm.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available