4.8 Article

Direct 3D Sampling of the Embryonic Mouse Head: Layer-wise Nanosecond Infrared Laser (NIRL) Ablation from Scalp to Cortex for Spatially Resolved Proteomics

Journal

ANALYTICAL CHEMISTRY
Volume 95, Issue 47, Pages 17220-17227

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.analchem.3c02637

Keywords

-

Ask authors/readers for more resources

Common workflows in bottom-up proteomics often fail to represent rare cell types due to the homogenization of tissue samples. In this study, a new 3D tissue sampling and homogenization method utilizing nanosecond infrared laser ablation was proposed. The method allows for better representation of sample composition and spatial proteome signatures, and was successfully used to analyze embryonic mouse heads.
Common workflows in bottom-up proteomics require homogenization of tissue samples to gain access to the biomolecules within the cells. The homogenized tissue samples often contain many different cell types, thereby representing an average of the natural proteome composition, and rare cell types are not sufficiently represented. To overcome this problem, small-volume sampling and spatial resolution are needed to maintain a better representation of the sample composition and their proteome signatures. Using nanosecond infrared laser ablation, the region of interest can be targeted in a three-dimensional (3D) fashion, whereby the spatial information is maintained during the simultaneous process of sampling and homogenization. In this study, we ablated 40 mu m thick consecutive layers directly from the scalp through the cortex of embryonic mouse heads and analyzed them by subsequent bottom-up proteomics. Extra- and intracranial ablated layers showed distinct proteome profiles comprising expected cell-specific proteins. Additionally, known cortex markers like SOX2, KI67, NESTIN, and MAP2 showed a layer-specific spatial protein abundance distribution. We propose potential new marker proteins for cortex layers, such as MTA1 and NMRAL1. The obtained data confirm that the new 3D tissue sampling and homogenization method is well suited for investigating the spatial proteome signature of tissue samples in a layerwise manner. Characterization of the proteome composition of embryonic skin and bone structures, meninges, and cortex lamination in situ enables a better understanding of molecular mechanisms of development during embryogenesis and disease pathogenesis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available