4.7 Article

A link between energy metabolism and plant host adaptation states in the two-spotted spider mite, Tetranychus urticae (Koch)

Journal

SCIENTIFIC REPORTS
Volume 13, Issue 1, Pages -

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41598-023-46589-9

Keywords

-

Ask authors/readers for more resources

This study found that non-adapted two-spotted spider mites and human pancreatic beta-cells responded in a similar manner to stressors, favoring redox homeostasis maintenance over energy generation. However, upon host adaptation, mite energy metabolic states were restored to normal.
Energy metabolism is a highly conserved process that balances generation of cellular energy and maintenance of redox homeostasis. It consists of five interconnected pathways: glycolysis, tricarboxylic acid cycle, pentose phosphate, trans-sulfuration, and NAD+ biosynthesis pathways. Environmental stress rewires cellular energy metabolism. Type-2 diabetes is a well-studied energy metabolism rewiring state in human pancreatic beta-cells where glucose metabolism is uncoupled from insulin secretion. The two-spotted spider mite, Tetranychus urticae (Koch), exhibits a remarkable ability to adapt to environmental stress. Upon transfer to unfavourable plant hosts, mites experience extreme xenobiotic stress that dramatically affects their survivorship and fecundity. However, within 25 generations, mites adapt to the xenobiotic stress and restore their fitness. Mites' ability to withstand long-term xenobiotic stress raises a question of their energy metabolism states during host adaptation. Here, we compared the transcriptional responses of five energy metabolism pathways between host-adapted and non-adapted mites while using responses in human pancreatic islet donors to model these pathways under stress. We found that non-adapted mites and human pancreatic beta-cells responded in a similar manner to host plant transfer and diabetogenic stress respectively, where redox homeostasis maintenance was favoured over energy generation. Remarkably, we found that upon host-adaptation, mite energy metabolic states were restored to normal. These findings suggest that genes involved in energy metabolism can serve as molecular markers for mite host-adaptation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available