4.7 Article

The impact of paleoclimatic on the structural strength of loess paleosol sequences and its implications for tillage on the Loess Plateau: A case study from Luochuan profile

Journal

SOIL & TILLAGE RESEARCH
Volume 236, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.still.2023.105939

Keywords

Loess-paleosol sequence; Structural strength; Shear-strength; Pre-consolidation pressure; Paleoclimate

Categories

Ask authors/readers for more resources

This study investigates the structural strength of the Loess-Paleosol Sequence (LPS) and finds that the strength tends to increase with burial depth, with the loess layer weaker than the paleosol layer. The microstructure of the LPS also undergoes significant transformations with increased burial depth, transitioning from an overhead structure to a matrix structure. These findings highlight the importance of climate conditions on the structural strength of the LPS.
The structural strength of the Loess-Paleosol Sequence (LPS) and the presence of paleosols within the LPS have significant implications for tillage and understanding past climate conditions. This research investigation sought to examine the structural strengths of the Luochuan (LC) LPS via both triaxial shear and oedometer tests, with the microstructure being further characterized through scanning electron microscopy. Results indicate that the LPS's structural strength tends to increase as burial depth increases. Additionally, the loess layer's structural strength is typically lower than that of the adjacent paleosol layer. The LPS's microstructure experiences considerable transformations with increased burial depth, particularly regarding changes in particle contact relationship, degree of cementation, and pore volume. This shift is characterized by a transition from an overhead structure to a matrix structure. These findings suggest that the loess layers' structural strength is associated with weaker pedogenic weathering occurring under cold and dry climatic conditions, whereas the paleosol layer exhibits a higher structural strength due to intense weathering during a warm and humid climate. Overall, this study establishes a link between paleoclimate and mechanical properties, using microstructure as a mediating factor, and provides a theoretical basis for tillage on the Loess Plateau.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available