4.6 Article

Hydrodeoxygenation of Oxygenates Derived from Biomass Pyrolysis Using Titanium Dioxide-Supported Cobalt Catalysts

Journal

MOLECULES
Volume 28, Issue 22, Pages -

Publisher

MDPI
DOI: 10.3390/molecules28227468

Keywords

hydrodeoxygenation; cobalt; titanium dioxide; 4-propylguaiacol; lignin valorization; bio-oil

Ask authors/readers for more resources

Bio-oil upgrading to produce biofuels and chemicals has been a popular topic, and this study focuses on the design of cost-effective catalysts. Commercial titania is used as the catalyst support, and two different forms of titania are evaluated. The study finds that the different forms of titania have an impact on the catalytic activity and stability.
Bio-oil upgrading to produce biofuels and chemicals has become an attractive topic over the past decade. However, the design of cost- and performance-effective catalysts for commercial-scale production remains a challenge. Herein, commercial titania (TiO2) was used as the support of cobalt (Co)-based catalysts (Co/TiO2) due to its low cost, high availability, and practicability for commercialization in the future. The Co/TiO2 catalysts were made with two different forms of TiO2 (anatase [TiO2-A] and rutile [TiO2-R]) and comparatively evaluated in the hydrodeoxygenation (HDO) of 4-propylguaicol (4PG), a lignin-derived model compound. Both Co/TiO2 catalysts promoted the HDO of 4PG following a similar pathway, but the Co/TiO2-R catalyst exhibited a higher activity in the early stages of the reaction due to the formation of abundant Ti3+ species, as detected by X-ray photoelectron spectroscopy (XPS) and hydrogen-temperature programed reduction (H-2-TPR) analyses. On the other hand, the Co/TiO2-A catalyst possessed a higher acidity that enhanced propylcyclohexane production at prolonged reaction times. In terms of reusability, the Co/TiO2-A catalyst showed a higher stability (less Co leaching) and reusability compared to Co/TiO2-R, as confirmed by transmission electron microscopy (TEM) and inductively coupled plasma optical emission spectroscopy (ICP-OES) analyses. The HDO of the real bio-oil derived from pyrolysis of Leucaena leucocephala revealed that the Co/TiO2-A catalyst could convert high oxygenated aromatics (methoxyphenols, dimethoxyphenols, and benzenediols) to phenols and enhanced the phenols content, hinting at its potential to produce green chemicals from bio-feedstock.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available