4.7 Article

TRPC6 Deletion Enhances eNOS Expression and Reduces LPS-Induced Acute Lung Injury

Journal

Publisher

MDPI
DOI: 10.3390/ijms242316756

Keywords

acute lung injury; TRPC6; eNOS; endothelial cells

Ask authors/readers for more resources

Inhibition of TRPC6 can ameliorate LPS-induced acute lung injury (ALI), which may be achieved by acting on the cell adhesion molecule signaling pathway and participating in the regulation of eNOS levels in endothelial cells.
Acute lung injury (ALI) is characterized by endothelial barrier disruption and associated inflammatory responses, and transient receptor potential cation channel 6 (TRPC6)-mediated Ca2+ influx is critical for endothelial hyperpermeability. In this study, we investigated the role of TRPC6 in LPS-induced ALI, analyzed gene expression in WT and TRPC6(-/-) lungs using RNA sequencing, and explored the effects of TRPC6 in the LPS-induced hyperpermeability in human umbilical vein endothelial cells (HUVECs) to elucidate the underlying mechanisms. Intratracheal instillation of LPS caused edema in the mouse lungs. Deletion of TRPC6 reduced LPS-induced lung edema and decreased cell infiltration. RNA sequencing analysis suggested that downregulated cell adhesion molecules in TRPC6(-/-) lungs may be responsible for their resistance to LPS-induced injury. In addition, downregulation of TRPC6 significantly alleviated the LPS-induced decrease in eNOS expression in lung tissue as well as in HUVECs. Moreover, inhibition of TRPC6 with the channel antagonist larixyl led to a decrease in LPS-induced hyperpermeability and ROS production in HUVECs, which could be reversed by blocking eNOS. Our findings suggest that inhibition of TRPC6 ameliorates LPS-induced ALI, which may be achieved by acting on the cell adhesion molecule signaling pathway and participating in the regulation of eNOS levels in endothelial cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available