4.6 Article

Enhanced Adsorption of Textile Dyes by a Novel Sulfonated Activated Carbon Derived from Pomegranate Peel Waste: Isotherm, Kinetic and Thermodynamic Study

Journal

MOLECULES
Volume 28, Issue 23, Pages -

Publisher

MDPI
DOI: 10.3390/molecules28237712

Keywords

activated carbon; surface modification; sulfonated activated carbon; adsorption; crystal violet dye; isotherm; kinetics

Ask authors/readers for more resources

In this study, the adsorption efficiency of activated carbon derived from pomegranate peel waste was improved through surface modification, which showed high effectiveness in removing crystal violet dye. The characterization studies confirmed the highly porous structure of the activated carbon.
The rapid growth of the dye and textile industry has raised significant public concerns regarding the pollution caused by dye wastewater, which poses potential risks to human health. In this study, we successfully improved the adsorption efficiency of activated carbon derived from pomegranate peel waste (PPAC) through a single-step and surface modification approach using 5-sulfonate-salicylaldehyde sodium salt. This innovative and effective sulfonation approach to produce sulfonated activated carbon (S-PPAC) proved to be highly effective in removing crystal violet dye (CV) from polluted water. The prepared PPAC and S-PPAC were characterized via FESEM, EDS, FTIR and BET surface area. Characterization studies confirmed the highly porous structure of the PPAC and its successful surface modification, with surface areas reaching 1180.63 m2/g and 740.75 m2/g for the PPAC and S-PPAC, respectively. The maximum adsorption capacity was achieved at 785.53 mg/g with the S-PPAC, an increase of 22.76% compared to the PPAC at 45 degrees C. The isothermic adsorption and kinetic studies demonstrated that the adsorption process aligned well with the Freundlich isotherm model and followed the Elovich kinetic model, respectively. The thermodynamic study confirmed that the adsorption of CV dye was endothermic, spontaneous and thermodynamically favorable onto PPAC and S-PPAC.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available