4.5 Article

Subcortical auditory model including efferent dynamic gain control with inputs from cochlear nucleus and inferior colliculus

Journal

JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA
Volume 154, Issue 6, Pages 3644-3659

Publisher

ACOUSTICAL SOC AMER AMER INST PHYSICS
DOI: 10.1121/10.0022578

Keywords

-

Ask authors/readers for more resources

An auditory model with a time-varying gain-control signal based on the physiology of the efferent system and subcortical neural pathways has been developed. The model dynamically controls cochlear gain via simulated outer hair cells. The model was adjusted based on the changes in firing rates of inferior colliculus neurons in awake rabbits in response to amplitude-modulated noise. The proposed model successfully simulated the increasing firing rates over time.
An auditory model has been developed with a time-varying, gain-control signal based on the physiology of the efferent system and subcortical neural pathways. The medial olivocochlear (MOC) efferent stage of the model receives excitatory projections from fluctuation-sensitive model neurons of the inferior colliculus (IC) and wide-dynamic-range model neurons of the cochlear nucleus. The response of the model MOC stage dynamically controls cochlear gain via simulated outer hair cells. In response to amplitude-modulated (AM) noise, firing rates of most IC neurons with band-enhanced modulation transfer functions in awake rabbits increase over a time course consistent with the dynamics of the MOC efferent feedback. These changes in the rates of IC neurons in awake rabbits were employed to adjust the parameters of the efferent stage of the proposed model. Responses of the proposed model to AM noise were able to simulate the increasing IC rate over time, whereas the model without the efferent system did not show this trend. The proposed model with efferent gain control provides a powerful tool for testing hypotheses, shedding insight on mechanisms in hearing, specifically those involving the efferent system.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available