4.7 Article

Topological Properties of a Non-Hermitian Quasi-1D Chain with a Flat Band

Journal

ADVANCED QUANTUM TECHNOLOGIES
Volume -, Issue -, Pages -

Publisher

WILEY
DOI: 10.1002/qute.202300225

Keywords

non-Hermitian; skin effect; topology

Ask authors/readers for more resources

The spectral properties of two possible non-Hermitian diamond chains with a flat band in the band structure, namely dimerized diamond chains, are investigated in this study. The systems are characterized using biorthogonal polarization and quantum metric, and the presence of non-Hermitian skin effect is observed. The study also shows the equivalence between the two non-Hermitian diamond chains and the non-Hermitian Su-Schrieffer-Heeger chains after a unitary rotation.
The spectral properties of a non-Hermitian quasi-1D lattice in two of the possible dimerization configurations are investigated. Specifically, it focuses on a non-Hermitian diamond chain that presents a zero-energy flat band. The flat band originates from wave interference and results in eigenstates with a finite contribution only on two sites of the unit cell. To achieve the non-Hermitian characteristics, the system under study presents non-reciprocal hopping terms in the chain. This leads to the accumulation of eigenstates on the boundary of the system, known as the non-Hermitian skin effect. Despite this accumulation of eigenstates, for one of the two considered configurations, it is possible to characterize the presence of non-trivial edge states at zero energy by a real-space topological invariant known as the biorthogonal polarization. This work shows that this invariant, evaluated using the destructive interference method, characterizes the non-trivial phase of the non-Hermitian diamond chain. For the second non-Hermitian configuration, there is a finite quantum metric associated with the flat band. Additionally, the system presents the skin effect despite the system having a purely real or imaginary spectrum. The two non-Hermitian diamond chains can be mapped into two models of the Su-Schrieffer-Heeger chains, either non-Hermitian, and Hermitian, both in the presence of a flat band. This mapping allows to draw valuable insights into the behavior and properties of these systems. This study presents the spectral properties of two non-Hermitian quasi-1D chains characterized by a flat band in the band structure, the dimerized diamond chains. It has characterized the two systems in terms of biorthogonal polarization and quantum metric. After a unitary rotation, it shows the equivalence to the non-Hermitian SSH chains and the appearance of a novel skin effect.image

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available