4.5 Article

Ethanol extract of Paridis rhizoma attenuates carrageenan-induced paw swelling in rats by inhibiting the production of inflammatory factors

Journal

BMC COMPLEMENTARY MEDICINE AND THERAPIES
Volume 23, Issue 1, Pages -

Publisher

BMC
DOI: 10.1186/s12906-023-04264-6

Keywords

Paridis rhizoma extract; Paw edema; Inflammation; Reactive oxygen species; NF-kB pathway

Ask authors/readers for more resources

Inflammation is a key factor in the development of various diseases. Developing new anti-inflammatory drugs with reduced side effects is important for treating inflammation-related diseases. Natural anti-inflammatory drugs have become an important area of research. This study investigated the anti-inflammatory mechanism of Paridis rhizoma extract (PRE) using rat models of acute inflammation and RAW264.7 cells. The results showed that PRE reduced inflammation and oxidative stress, and inhibited the nuclear factor kappa B (NF-KB) signaling pathway.
Context Inflammation has been identified as a key factor contributing to the development of numerous diseases. Several anti-inflammatory drugs have been developed to treat inflammation-related diseases. However, some of such drugs are associated with varying degrees of side effects. Therefore, it is imperative to develop new anti-inflammatory drugs with reducing side effects for the treatment of inflammation-related diseases. Natural anti-inflammatory drugs have emerged as an important area of research in recent years. The study was to determine the anti-inflammatory mechanism of Paridis rhizoma extract (PRE) in rat models of acute inflammation induced by carrageenan and RAW264.7 cells models induced by lipopolysaccharide (LPS).Materials and methods PRE was investigated using the carrageenan-induced paw oedema model on rats in vivo. Histopathology examined the extent of inflammatory infiltration and tissue damage. The effect of PRE on the levels of specific cytokines was determined using enzyme-linked immunosorbent assay (ELISA). The Cell Counting Kit (CCK)-8 assay evaluated the cytotoxic effects of PRE on Raw264.7 cells. The mRNA expression levels of cytokines were quantified using quantitative real-time reverse transcriptase polymerase chain reaction (RT-PCR). Western blot measured TNF-alpha, IL6, TLR4, p-P65, p-IKB, HO1, SOD1 and SOD2. Fluorescence measured the cellular levels of reactive oxygen species (ROS).Results PRE treatment reduced interstitial edema and structural damage in a dose-dependent manner in vivo. PRE inhibited inflammatory responses in vivo and in vitro, as evidenced by the decreased expression of inflammatory factors, production of ROS, and increased expression of SOD1, SOD2, and HO1. Moreover, PRE inhibited the activity of the nuclear factor kappa B (NF-kB) pathway.Conclusion The anti-inflammatory activity and potential mechanism of PRE were demonstrated according to the results. PRE reduced LPS-induced inflammation in RAW264.7 cells by inhibiting the NF-KB signaling pathway and ROS production in vitro. PRE alleviated interstitial edema and structural damage in the carrageenan-induced paw edema model on rats in vivo. This study provided an idea for future development of PR-based anti-inflammatory drugs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available