4.7 Article

Mesenchymal stem cells-derived extracellular vesicles protect against oxidative stress-induced xenogeneic biological root injury via adaptive regulation of the PI3K/Akt/NRF2 pathway

Journal

JOURNAL OF NANOBIOTECHNOLOGY
Volume 21, Issue 1, Pages -

Publisher

BMC
DOI: 10.1186/s12951-023-02214-5

Keywords

Biological tooth root; Extracellular vesicle; Oxidative stress; Extracellular matrix; Dental follicle cell

Ask authors/readers for more resources

This study constructed xenogeneic bioengineered tooth roots and used extracellular vesicles from human adipose-derived mesenchymal stem cells (hASC-EVs) to protect the bio-roots from oxidative damage. The results showed that hASC-EVs reduced cell apoptosis and oxidative stress, improved cell proliferation and antioxidant capacity, and suppressed oxidative damage through the activation of the PI3K/Akt and NRF2 pathways. In vivo experiments demonstrated that hASC-EV administration enhanced the antioxidant effect of the bio-root and promoted the regeneration of periodontal ligament-like tissue.
Xenogeneic extracellular matrices (xECM) for cell support have emerged as a potential strategy for addressing the scarcity of donor matrices for allotransplantation. However, the poor survival rate or failure of xECM-based organ transplantation is due to the negative impacts of high-level oxidative stress and inflammation on seed cell viability and stemness. Herein, we constructed xenogeneic bioengineered tooth roots (bio-roots) and used extracellular vesicles from human adipose-derived mesenchymal stem cells (hASC-EVs) to shield bio-roots from oxidative damage. Pretreatment with hASC-EVs reduced cell apoptosis, reactive oxygen species generation, mitochondrial changes, and DNA damage. Furthermore, hASC-EV treatment improved cell proliferation, antioxidant capacity, and odontogenic and osteogenic differentiation, while significantly suppressing oxidative damage by activating the phosphatidylinositol 3-kinase (PI3K)/Akt pathway and nuclear factor erythroid 2 (NFE2)-related factor 2 (NRF2) nuclear translocation via p62-associated Kelch-like ECH-associated protein 1 (KEAP1) degradation. Inhibition of PI3K/Akt and Nrf2 knockdown reduced antioxidant capacity, indicating that the PI3K/Akt/NRF2 pathway partly mediates these effects. In subcutaneous grafting experiments using Sprague-Dawley rats, hASC-EV administration significantly enhanced the antioxidant effect of the bio-root, improved the regeneration efficiency of periodontal ligament-like tissue, and maximized xenograft function. Conclusively, therefore, hASC-EVs have the potential to be used as an immune modulator and antioxidant for treating oxidative stress-induced bio-root resorption and degradation, which may be utilized for the generation and restoration of other intricate tissues and organs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available