4.8 Article

Label-Free Single-Cell SERS Detection and Fluorescence Imaging of Molecular Responses to Endoplasmic Reticulum Stress under Electrical Stimulation

Journal

ANALYTICAL CHEMISTRY
Volume 95, Issue 48, Pages 17716-17725

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.analchem.3c03570

Keywords

-

Ask authors/readers for more resources

In this study, ER-targeting plasmonic nanoprobes were developed to trace molecular stress response profiling within the ER during electrical stimulation. It was found that excessive accumulation of beta-misfolded proteins after electrical stimulation led to disruption of ER homeostasis and mitochondrial dysfunction. Furthermore, increasing voltage levels resulted in calcium ion imbalance and inhibition of tumor cell migration.
The endoplasmic reticulum (ER) is one of the most important organelles in eukaryotic cells, in which most proteins and lipids are synthesized to regulate complex cellular processes. Generally, the excessive accumulation of unfolded or misfolded proteins can disturb ER homeostasis and induce endoplasmic reticulum stress (ERS). Howbeit, the molecular stress responses within ERS and metastatic behaviors of tumor cells during electrical stimulation (ES) are still poorly investigated and remain a challenge. In this study, by the combined use of fluorescence imaging, ER-targeting plasmonic nanoprobes were developed to trace molecular stress response profiling within the ER during a constant-voltage ES process at similar to 1 V based on label-free surface-enhanced Raman spectroscopy (SERS). The excess accumulation of beta-misfolded proteins was found after the ES, leading to breaking of the ER homeostasis and further inducing mitochondrial dysfunction. Notably, the excessive stress of ER under ES can destroy the calcium ion balance and induce significant upregulation of calreticulin expression. Importantly, the content ratio of two kinds of cadherin between E-cadherin and N-cadherin was gradually improved with the voltages boosted. Meanwhile, the epithelial adhesion factor expression was ascended with voltages amplified, leading to inhibiting tumor cell migration at low voltages or death under higher voltages (similar to 1 V). This study provides cellular insights into the ES approach for tumor therapy and also provides a simple and effective method for detecting molecular stress responses in endoplasmic reticulum stress.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available