4.7 Article

Large voltage-controlled magnetic anisotropy effect in magnetic tunnel junctions prepared by deposition at cryogenic temperatures

Journal

APL MATERIALS
Volume 11, Issue 12, Pages -

Publisher

AIP Publishing
DOI: 10.1063/5.0176263

Keywords

-

Ask authors/readers for more resources

This study investigates the influence of the buffer material and cryogenic temperature deposition process on the voltage-controlled magnetic anisotropy (VCMA) effect in CoFeB layers in MgO-based magnetic tunnel junctions. The use of TaB buffers allows for a flat and less-contaminated CoFeB/MgO interface while cryogenic temperature deposition enhances the efficiency of the VCMA effect and its annealing tolerance. Introduction of interface engineering methods leads to a large VCMA coefficient.
We investigated the influence of the buffer material and a cryogenic temperature deposition process on the voltage-controlled magnetic anisotropy (VCMA) effect for an ultrathin CoFeB layer in bottom-free type MgO-based magnetic tunnel junctions prepared by a mass production sputtering process. We used Ta and TaB buffers and compared the differences between them. The TaB buffer enabled us to form a flat and less-contaminated CoFeB/MgO interface by suppressing the diffusion of Ta with maintaining a stable amorphous phase. Furthermore, the introduction of cryogenic temperature deposition for the ultrathin CoFeB layer on the TaB buffer improved the efficiency of the VCMA effect and its annealing tolerance. Combining this with interface engineering employing an Ir layer for doping and a CoFe termination layer, a large VCMA coefficient of -138 +/- 3 fJ/Vm was achieved. The developed techniques for the growth of ultrathin ferromagnet and oxide thin films using cryogenic temperature deposition will contribute to the development of high-performance spintronic devices, such as voltage-controlled magnetoresistive random access memories.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available