4.7 Article

Mathematical modeling of biochar's role in elevating co-composted poultry carcass temperatures

Journal

WASTE MANAGEMENT
Volume 173, Issue -, Pages 40-50

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.wasman.2023.11.008

Keywords

Compost; Biochar; Heat transfer; Modeling; Poultry; Temperature

Ask authors/readers for more resources

Incorporating biochar into composting systems can increase compost temperatures. This study developed a heat transfer model for a biochar-amended co-composting system and found that biochar increased thermal conductive losses but also enhanced microbial activity, resulting in an overall increase in total heat unit. When biochar was applied on the surface, it mainly functioned as an insulator.
Previous studies reported that incorporating biochar into composting systems leads to an increase in compost temperatures. Although potential reasons, such as improved microbial activity or increased insulation, were suggested, no study has quantitatively determined the contribution of either aspect. In this study, we developed a heat transfer model for a biochar-amended co-composting system based on the measurements from our two previously published studies conducted to co-compost poultry carcasses with woodchips and wood-based (WBC), distillers grain (DGBC), and cow manure (CMB) biochar. The two composting studies were conducted over three heating cycles, with two turnings separating each cycle. The simulation for the second heating cycle, during which the compost materials began to degrade and were well-mixed, showed an average R2 value of 0.86 and was selected for further analyses. Results from the model suggested that incorporating biochar into the com-posting mixture increases thermal conductive losses. For example, at a biochar addition rate of 13 % (v/v), the predicted longitudinal conductive resistance of the compost pile was reduced by 24.9 %. However, the total heat unit still increased by 11.2 +/- 3.17 % due to the enhancement of microbial activity as supported by elevated oxygen consumption (38.1-61.1 %). When biochar was applied in layers on the surface of the composting bins, its impact on microbial activity was minimal, primarily functioning as an insulator. Under these conditions, the total heat unit was 8.7 % higher than the control. These findings suggest that biochar's primary effect on temperature development was through promoting microbial activity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available