4.7 Article

The Effects of Different Soil Component Couplings on the Methylation and Bioavailability of Mercury in Soil

Journal

TOXICS
Volume 11, Issue 11, Pages -

Publisher

MDPI
DOI: 10.3390/toxics11110942

Keywords

soil constituents; mercury; methylmercury; bioavailability; soil texture

Ask authors/readers for more resources

Soil composition can influence the behavior and bioavailability of soil mercury (Hg) by altering its chemical properties and soil texture.
Soil composition can influence the chemical forms and bioavailability of soil mercury (Hg). However, previous studies have predominantly focused on the influence of individual components on the biogeochemical behavior of soil Hg, while the influence of various component interactions among several individual factors remain unclear. In this study, artificial soil was prepared by precisely regulating its components, and a controlled potted experiment was conducted to investigate the influence of various organic and inorganic constituents, as well as different soil textures resulting from their coupling, on soil Hg methylation and its bioavailability. Our findings show that inorganic components in the soils primarily exhibit adsorption and fixation effects on Hg, thereby reducing the accumulation of total mercury (THg) and methylmercury (MeHg) in plants. It is noteworthy that iron sulfide simultaneously resulted in an increase in soil MeHg concentration (277%). Concentrations of THg and MeHg in soil with peat were lower in rice but greater in spinach. A correlation analysis indicated that the size of soil particles was a crucial factor affecting the accumulation of Hg in plants. Consequently, even though fulvic acid activated soil Hg, it significantly increased the proportion of soil particles smaller than 100.8 mu m, thus inhibiting the accumulation of Hg in plants, particularly reducing the concentration of THg (93%) and MeHg (85%) in water spinach. These results demonstrate that the interaction of organic and inorganic components can influence the biogeochemical behavior of soil Hg not only through their chemical properties, but also by altering the soil texture.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available