4.7 Article

Advection-based tracking and analysis of salinity movement in the Indian Ocean

Journal

COMPUTERS & GEOSCIENCES
Volume 182, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.cageo.2023.105493

Keywords

Multivariate temporal data; Temporal tracking; Oceanography; Visualization; Advection; High salinity core; Bay of Bengal

Ask authors/readers for more resources

The Bay of Bengal maintains its salinity distribution due to the cyclic flow of high salinity water and the mixing with freshwater. This paper introduces an advection-based feature definition and algorithms to track the movement of high salinity water, validated through comparison with observed data.
The Bay of Bengal (BoB) has maintained its salinity distribution over the years despite a continuous flow of fresh water entering it through rivers on the northern coast, which is capable of diluting the salinity. This can be attributed to the cyclic flow of high salinity water (>= 35 psu), coming from Arabian sea and entering BoB from the south, which moves northward and mixes with this fresh water. The movement of this high salinity water has been studied and analyzed in previous work (Singh et al., 2022). This paper extends the computational methods and analysis of salinity movement. Specifically, we introduce an advection based feature definition that represents the movement of high salinity water, and describe algorithms to track their evolution over time. This method allows us to trace the movement of high salinity water caused due to ocean currents. The method is validated via comparison with established observations on the flow of high salinity water in the BoB, including its entry from the Arabian Sea and its movement near Sri Lanka. Further, the visual analysis and tracking framework enables us to compare it with previous work and analyze the contribution of advection to salinity transport.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available