4.6 Review

Sulfur and Water Resistance of Carbon-Based Catalysts for Low-Temperature Selective Catalytic Reduction of NOx: A Review

Journal

CATALYSTS
Volume 13, Issue 11, Pages -

Publisher

MDPI
DOI: 10.3390/catal13111434

Keywords

low-temperature SCR; carbon-based catalysts; SO2 and H2O resistance; NOx

Ask authors/readers for more resources

This study introduces the efficient performance of low-temperature NH3-SCR technology for NOx removal from flue gas and discusses the potential application and challenges of carbon-based catalysts in this technology. Strategies to improve the resistance of carbon-based catalysts to water and SO2 are summarized, providing guidance for further development in this field.
Low-temperature NH3-SCR is an efficient technology for NOx removal from flue gas. The carbon-based catalyst designed by using porous carbon material with great specific surface area and interconnected pores as the support to load the active components shows excellent NH3-SCR performance and has a broad application prospect. However, overcoming the poor resistance of H2O and SO2 poisoning for carbon-based catalysts remains a great challenge. Notably, reviews on the sulfur and water resistance of carbon-based low-temperature NH3-SCR catalysts have not been previously reported to the best of our knowledge. This review introduces the reaction mechanism of the NH3-SCR process and the poisoning mechanism of SO2 and H2O to carbon-based catalysts. Strategies to improve the SO2 and H2O resistance of carbon-based catalysts in recent years are summarized through the effect of support, modification, structure control, preparation methods and reaction conditions. Perspective for the further development of carbon-based catalysts in NOx low-temperature SCR is proposed. This study provides a new insight and guidance into the design of low-temperature SCR catalysts resistant to SO2 and H2O in the future.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available