4.6 Article

Changes in Microbial Communities Using Pigs as a Model for Postmortem Interval Estimation

Journal

MICROORGANISMS
Volume 11, Issue 11, Pages -

Publisher

MDPI
DOI: 10.3390/microorganisms11112811

Keywords

postmortem interval estimation; forensic science; microbial community; rupture

Categories

Ask authors/readers for more resources

Microbial communities undergo successional changes during decay and decomposition, providing valuable insights for estimating the postmortem interval (PMI). The abundance of bacterial communities decreases over time, and there are significant differences in microbial diversity before and after rupture. Using genus as a biomarker can help estimate the PMI.
Microbial communities can undergo significant successional changes during decay and decomposition, potentially providing valuable insights for determining the postmortem interval (PMI). The microbiota produce various gases that cause cadaver bloating, and rupture releases nutrient-rich bodily fluids into the environment, altering the soil microbiota around the carcasses. In this study, we aimed to investigate the underlying principles governing the succession of microbial communities during the decomposition of pig carcasses and the soil beneath the carcasses. At early decay, the phylum Firmicutes and Bacteroidota were the most abundant in both the winter and summer pig rectum. However, Proteobacteria became the most abundant in the winter pig rectum in late decay. Using genus as a biomarker to estimate the PMI could get the MAE from 1.375 days to 2.478 days based on the RF model. The abundance of bacterial communities showed a decreasing trend with prolonged decomposition time. There were statistically significant differences in microbial diversity in the two periods (pre-rupture and post-rupture) of the four groups (WPG 0-8Dvs. WPG 16-40D, p < 0.0001; WPS 0-16Dvs. WPS 24-40D, p = 0.003; SPG 0D vs. SPG 8-40D, p = 0.0005; and SPS 0D vs. SPS 8-40D, p = 0.0208). Most of the biomarkers in the pre-rupture period belong to obligate anaerobes. In contrast, the biomarkers in the post-rupture period belong to aerobic bacteria. Furthermore, the genus Vagococcus shows a similar increase trend, whether in winter or summer. Together, these results suggest that microbial succession was predictable and can be developed into a forensic tool for estimating the PMI.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available