4.5 Article

A modified methodology to substitute U-shape well using a single well with fracture network: Design and performance

Journal

GEOTHERMICS
Volume 117, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.geothermics.2023.102870

Keywords

Geothermal energy; Abandoned oil wells; Enhanced fracture system; Numerical simulation

Ask authors/readers for more resources

This study proposes a new approach of retrofitting abandoned oil wells into geothermal wells, and investigates the effects of different parameters on the performance using a numerical model. The results show that the enhanced fracture system significantly improves the efficiency of geothermal energy extraction, and optimal design should control the flow rate and use proppant.
The increasing demand for low-carbon energy has led to the exploration of renewable energy sources, including geothermal energy. One potential method for accessing this energy is through the retrofitting of abandoned oil wells into geothermal wells. While there have been some previous efforts in this area, many of these methods suffer from low efficiency or high cost. In this study, we have proposed a novel retrofitting pattern for a single well embedded with an enhanced fracture system (EFS). Using COMSOL Multiphysics, a numerical model was established to investigate the effects of different reservoir and fracture properties on the performance of EFS. Our analysis showed that it is possible to replace a U-shaped well with a single well using EFS, and that the thermal power was more than four times greater than that of conventional borehole heat exchangers over a 50-year heat extraction period. We found that fracture permeability and aperture were the two most critical parameters for achieving high heat extraction performance in EFS. EFS exhibits significantly better performance compared to the traditional open-loop geothermal system (OLGS). Based on our findings, we recommend controlling the flow rate within the range of 10-20 kg/s and pumping proppant for optimal EFS design.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available