4.6 Article

Optimization of surface roughness, phase transformation and shear bond strength in sandblasting process of YTZP using statistical machine learning

Publisher

ELSEVIER
DOI: 10.1016/j.jmbbm.2023.106245

Keywords

Phase transformation; Sandblasting process parameters; Shear bond strength; Statistical machine learning; Surface roughness; Taguchi method; YTZP

Ask authors/readers for more resources

This study aimed to find the optimal sandblasting parameters for roughening YTZP surfaces. Through experimental and statistical analysis, the best setting was found to be IA = 45 degrees, AP = 110 μm, ST = 20 s, and P = 400 kPa, which resulted in the maximum surface roughness, phase transformation, and shear bond strength.
Sandblasting process is often applied to roughen the intaglio of yttria tetragonal zirconia polycrystals (YTZP) surfaces for easy and quality adhesion and micro-shear retention with dentine/resin cements. Sandblasting process parameters have shown to influence, at different scales, surface roughness, phase transformation and shear bond strength, all of which are referred, herein, as performance characteristics. This study aimed to find the parametric settings of sandblasting parameters that could simultaneously optimize these performance characteristics, hypothetically testing the probability. YTZP surfaces were sandblasted at different levels of incidence angle (IA), abrasive particle size (AP), pressure(P) and sandblasting time (ST) following the Taguchi method based on the two-level parametric process settings (L8(27)). Surface morphologies, roughness (SR), monoclinic content (MC), and shear bond strength (SS) were characterized by the SEM, average surface roughness, XRD, and shear bond strength tests, respectively. Rough surfaces containing scratches, plastic deformation streaks, micro cracks and pitting were observed. According to the Taguchi method, the same optimum sandblasting parametric setting maximized SR and MC but failed to maximize SS. Subsequently, the principal component analysis embedded in statistical machine learning was applied to find the optimum sandblasting parametric setting that maximized all the performance characteristics. The optimum sandblasting setting of IA = 45 degrees, AP = 110 mu m, ST = 20 s and P = 400 kPa predicted the maximum values of SR = 0.773 mu m, MC = 36% and SS = 16.6 MPa. Analysis of variance confirmed AP and P as the most influencing parameters affecting all performance characteristics. Finally, these results provide a systematic and comprehensive route for optimizing sandblasting roughening of YTZP surfaces which can be adopted in adhesive dental and orthodontic industry.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available