4.7 Article

Improved hydrogen evolution performance of Ni-based nanoporous catalyst with Mo and B co-addition

Journal

JOURNAL OF COLLOID AND INTERFACE SCIENCE
Volume 656, Issue -, Pages 262-269

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcis.2023.11.100

Keywords

Dealloying; Nanoporous; Self-standing; Hydrogen evolution reaction; Ni-based catalyst

Ask authors/readers for more resources

This study reports the preparation and characterization of a nanoporous Ni-based catalyst (NiMoB) prepared by dealloying, which exhibits remarkable electrocatalytic activity and stability in alkaline electrolyte for hydrogen evolution reaction (HER). Density functional theory calculations reveal that the incorporation of Mo and B optimizes the electronic structure of the catalyst and regulates the adsorption of HER intermediates, leading to accelerated HER kinetics.
The exploration of efficient and stable noble-metal-free electrocatalysts for hydrogen evolution reaction (HER) is of great interest for the development of electrochemical hydrogen production technologies. Herein, nanoporous Ni-based catalyst with Mo and B co-addition (NiMoB) prepared by dealloying is reported as an efficient electrocatalysts for HER. The nanoporous NiMoB achieves an overpotential of 31 mV at 10 mA cm-2, along with exceptional catalytic stability in alkaline electrolyte. Density functional theory (DFT) calculations reveal that the incorporation of Mo and B can synergistically optimize the electronic structure and regulate the adsorption of HER intermediates on the Ni active site, thus accelerating the HER kinetics. This study provides a new perspective for the development of non-precious Ni-based catalysts towards efficient hydrogen energy conversion.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available