4.7 Article

Reductive cyclodimerization of chalcones: exploring the self-adaptability of galvanostatic electrosynthesis

Journal

CHEMICAL COMMUNICATIONS
Volume 60, Issue 4, Pages 404-407

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d3cc04920e

Keywords

-

Ask authors/readers for more resources

The self-adaptability of galvanostatic electrolysis was found to be helpful in a multistage chemo- and diastereoselective electrochemically promoted cyclodimerization of chalcones. Through a series of reductive events, densely functionalized cyclopentanes with five contiguous stereocenters were obtained (25 examples, yields up to 95%, dr values up to >20:1). Further experimental and electrochemical investigations indicated the crucial role of dynamic kinetic resolution of the aldol intermediate in the reaction mechanism.
The self-adaptability of galvanostatic electrolysis was shown to assist a multistage unprecedented chemo- and diastereoselective electrochemically promoted cyclodimerization of chalcones. The process, all involving the reductive events, delivered densely functionalized cyclopentanes featuring five contiguous stereocenters (25 examples, yields of up to 95%, dr values up to >20 : 1). Dedicated and combined experimental as well as electrochemical investigation revealed the key role of a dynamic kinetic resolution of the aldol intermediate for the reaction mechanism.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available