4.7 Article

Improving the performance of perovskite solar cells using a dual-hole transport layer

Journal

DALTON TRANSACTIONS
Volume 53, Issue 2, Pages 484-492

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d3dt03501h

Keywords

-

Ask authors/readers for more resources

This study improves the performance of perovskite solar cells by using a dual-hole transport layer strategy. This strategy enhances the charge transfer efficiency of the transport layer, reduces charge recombination, and improves the quality of the perovskite film layer. Ultimately, the stability of the device is enhanced.
The energy loss (Eloss) caused by inefficient charge transfer and large energy level offset at the buried interface can easily restrict the performance of p-i-n perovskite solar cells (PVSCs). In this study, the utilization of poly-TPD and P3CT-N as a dual-hole transporting layer (HTLs) was implemented in a sequential manner. This approach aimed to improve the charge transfer efficiency of the HTL and mitigate charge recombination at the interface between the HTL and PVK. The results showed that this strategy also could achieve more suitable energy levels, improve the quality of the perovskite film layer, and ultimately enhance the device's stability. IPVSCs employing the dual-HTLs approach exhibited the highest power conversion efficiency of 19.85%, and the open-circuit voltage increased to 1.09 V from 1.00 V. This study offers a straightforward and efficient approach to boost the device performance by minimizing Eloss and reducing the buried interfacial defects. The findings underscore the potential of employing a dual-HTL strategy as a promising pathway for further advancements in PVSCs. Schematic structure and improved performance of perovskite solar cells using a double-hole transport layer strategy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available