4.2 Article

Prime vertex-minors of a prime graph

Journal

EUROPEAN JOURNAL OF COMBINATORICS
Volume 118, Issue -, Pages -

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ejc.2023.103871

Keywords

-

Categories

Ask authors/readers for more resources

The article explores the essential properties of prime graphs and provides conditions for the existence of non-essential vertices. The research findings are of significant importance for understanding the structure and properties of graphs.
A graph is prime if it does not admit a partition (A, B) of its vertex set such that min{vertical bar A vertical bar, vertical bar B vertical bar} >= 2 and the rank of the AxB submatrix of its adjacency matrix is at most 1. A vertex v of a graph is non-essential if at least two of the three kinds of vertex-minor reductions at v result in prime graphs. In 1994, Allys proved that every prime graph with at least four vertices has a non-essential vertex unless it is locally equivalent to a cycle graph. We prove that every prime graph with at least four vertices has at least two non-essential vertices unless it is locally equivalent to a cycle graph. As a corollary, we show that for a prime graph G with at least six vertices and a vertex x, there is a vertex v not equal x such that G \ v or G * v \ v is prime, unless x is adjacent to all other vertices and G is isomorphic to a particular graph on odd number of vertices. Furthermore, we show that a prime graph with at least four vertices has at least three non-essential vertices, unless it is locally equivalent to a graph consisting of at least two internally-disjoint paths between two fixed distinct vertices having no common neighbors. We also prove analogous results for pivot-minors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available