4.6 Article

Strong Thermo-tolerant Silicone-Modified Waterborne Polyurethane/Polyimide Pressure-Sensitive Adhesive

Journal

LANGMUIR
Volume 39, Issue 49, Pages 17611-17621

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.langmuir.3c01564

Keywords

-

Ask authors/readers for more resources

By introducing silicone modification and polyimide structure modification, the heat resistance and peel strength of waterborne polyurethane pressure-sensitive adhesive can be enhanced, thereby increasing its potential applications in high-temperature environments.
A waterborne polyurethane pressure-sensitive adhesive (WPUPSA) has the advantages of low pollution and good viscoelasticity. However, its poor thermo-tolerance limits its application in the field of high temperatures. Hence, a novel silicone-modified strong thermo-tolerant waterborne polyurethane/polyimide pressure-sensitive adhesive is developed as a way to remedy this problem. The single-chain structure of waterborne polyurethane (WPU) is transformed into a network structure by introducing the three-position network structure to increase the cohesive energy and heat resistance of the WPUPSA. Meanwhile, the primary chain of waterborne polyurethane (WPU) is modified by the reaction between pyromellitic dianhydride (PMDA) and isophorone diisocyanate (IPDI) to include an imide ring and a benzene ring with more stable structures and heat resistance. Characterization results of the prepared WPUPSA show that the thermo-tolerance index of the WPUPSA increases by 15.2% and the room temperature 180 degrees peel strength and shear resistance of the WPUPSA increase by 80.9 and 231.8%, respectively. Meanwhile, the temperature corresponding to the maximum thermal decomposition rate of the samples is improved. More importantly, at 80 and 100 degree celsius, the 180(degrees) peel strength and shear resistance of the modified samples are stronger than those of the unmodified samples. In addition, the energy storage modulus of WPUPSAs is also greater than the loss and increases with the increase of the frequency. Viscoelasticity dominates in the samples. This will provide new insight for the development of WPUPSAs in the field of high-temperature resistance.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available