4.7 Article

Can synthetic biology really empower microbial biopolymers as efficient food contact materials?

Journal

TRENDS IN FOOD SCIENCE & TECHNOLOGY
Volume 143, Issue -, Pages -

Publisher

ELSEVIER SCIENCE LONDON
DOI: 10.1016/j.tifs.2023.104250

Keywords

Synthetic biology; Tailored biopolymers; Microbial polymers; Food packaging; Microbial cell factories

Ask authors/readers for more resources

This opinion paper explores the potential of integrating synthetic biology into microbial polymers to produce tailored biopolymers for food packaging applications. By leveraging synthetic biology tools and adopting safety assessment protocols established within the regulatory framework, this innovative approach has the potential to not only replace conventional methods but also address environmental concerns associated with traditional food packaging.
This opinion paper explores the potential of integrating synthetic biology into microbial polymers to produce tailored biopolymers for food packaging applications. Synthetic biology has shown precise control over metabolic machinery, enabling the manipulation of pathways involved in microbial biopolymer production. However, there is limited literature available on utilizing the same pathways for designing tailored biopolymers suitable as efficient food contact materials. This is primarily due to the regulatory status of microbial polymers as determined by food safety authorities. One possible solution is to leverage synthetic biology tools by adopting safety assessment protocols established within the regulatory framework. By considering the advantages of synthetic biology-driven microbial polymers, this innovative approach has the potential, not only to replace conventional methods but also to provide additional value by addressing environmental concerns associated with traditional food packaging.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available