4.6 Article

DFT mechanistic study of biomimetic diiron complex catalyzed dehydrogenation: Unexpected Fe(III)Fe(III)-1,1-μ-hydroperoxy active species for hydride abstraction

Journal

JOURNAL OF INORGANIC BIOCHEMISTRY
Volume 251, Issue -, Pages -

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.jinorgbio.2023.112426

Keywords

Biomimetic diiron catalysis; O-O heterolytic cleavage; Hydride shift; DFT calculation; sMMO; Non-heme diiron enzymes

Ask authors/readers for more resources

The diiron active site plays a crucial role in catalytic transformations in both biological and chemical systems. Recent advancements in the field include the synthesis of biomimetic diiron catalysts inspired by the active structure of soluble methane monooxygenase (sMMO), which have been successfully applied to the dehydrogenation of indolines.
The diiron active site is pivotal in catalyzing transformations in both biological and chemical systems. Recently, a range of biomimetic diiron catalysts have been synthesized, drawing inspiration from the active architecture of soluble methane monooxygenase (sMMO). These catalysts have been successfully deployed for the dehydrogenation of indolines, marking a significant advancement in the field. Using density functional theory (DFT) calculations, we have identified a novel mechanistic pathway that governs the dehydrogenation of indolines catalyzed by a biomimetic diiron complex. Specifically, this reaction is facilitated by the transfer of a hybrid atom from the C1 position of the substrate to the distal oxygen atom of the Fe(III)Fe(III)-1,1-mu-hydroperoxy active species. This transfer serves as the rate-limiting step for the heterolytic cleavage of the O-O bond, ultimately generating the substrate cation. The mechanism we propose aligns well with mechanistic investigations incorporating both kinetic isotope effect (KIE) measurements and evaluations of stereochemical selectivity. This research contributes to the broader scientific understanding of catalysis involving biomimetic diiron complexes and offers valuable insights into the catalytic behaviors of non-heme diiron metalloenzymes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available