4.8 Article

Colossal negative magnetoresistance in field-induced Weyl semimetal of magnetic half-Heusler compound

Journal

NATURE COMMUNICATIONS
Volume 14, Issue 1, Pages -

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41467-023-41982-4

Keywords

-

Ask authors/readers for more resources

This study investigates the less studied half-Heusler alloy HoAuSn and demonstrates its transition into a Weyl semimetal state under a magnetic field, resulting in a significant decrease in resistance.
The discovery of topological insulators and semimetals triggered enormous interest in exploring emergent electromagnetic responses in solids. Particular attention has been focused on ternary half-Heusler compounds, whose electronic structure bears analogy to the topological zinc-blende compounds while also including magnetic rare-earth ions coupled to conduction electrons. However, most of the research in this system has been in band-inverted zero-gap semiconductors such as GdPtBi, which still does not fully exhaust the large potential of this material class. Here, we report a less-studied member of half-Heusler compounds, HoAuSn, which we show is a trivial semimetal or narrow-gap semiconductor at zero magnetic field but undergoes a field-induced transition to a Weyl semimetal, with a negative magnetoresistance exceeding four orders of magnitude at low temperatures. The combined study of Shubnikov-de Haas oscillations and first-principles calculation suggests that the exchange field from Ho 4f moments reconstructs the band structure to induce Weyl points which play a key role in the strong suppression of large-angle carrier scattering. Our findings demonstrate the unique mechanism of colossal negative magnetoresistance and provide pathways towards realizing topological electronic states in a large class of magnetic half-Heusler compounds. Half-Heusler alloys containing rare earth ions have attracted interest due to combination of band-inversion and magnetism. Ueda et al study less studied trivial semiconductor HoAuSn, and show that it undergoes a magnetic field induced transition to a Weyl semimetal state, with a large reduction in the resistance.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available