4.5 Article

Facilitation of Hydrate Dissociation and Structural Evolution by Major Marine Anions under Static Electric Fields

Journal

JOURNAL OF PHYSICAL CHEMISTRY B
Volume 127, Issue 48, Pages 10447-10457

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpcb.3c06012

Keywords

-

Ask authors/readers for more resources

This study investigates the effects of different anion solutions on methane hydrates under an electric field through molecular dynamics simulations. The presence of anions enhances the instability of methane hydrates and leads to a staged dissociation process.
Electric fields have been proven to be capable of significantly affecting the equilibrium state of hydrates. In this study, the thermodynamic properties and structural changes of methane hydrate (MH) in various anion solutions in an electric field at 0.7 V/nm were investigated by molecular dynamics simulations. The presence of anions significantly enhances the instability of methane hydrates under electric fields, leading to a staged dissociation process. First, the anions coexist with MH to form a temporary metastable structure under the action of an electric field. Then, the migration of anions causes the dissociation of nearby hydrates and the formation of flow channels in the hydrate layer, which leads to the complete dissociation of MH after a period. The promotive effects of F-, Br-, I-, and Cl- ions were close, while SO42- was relatively weak. The anions are still in hydration shells in the MH phase, but the structure of the hydration shells differs slightly from that in solution (the coordination numbers of I- and SO42- ions increased). The migration resistances of multiple anions to cross the surface of the hydrate layer are similar. However, inside the hydrate phase, the anions with a larger radius have a higher migration resistance. It is difficult for SO42- ions to migrate inside the hydrate phase, and they tend to form a metastable structure on the hydrate surface. Combining our previous studies, SrCl2 solution has the best hydrate promotion under an electric field environment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available