4.6 Article

Shape memory hydrogels with remodelable permanent shapes and programmable cold-induced shape recovery behavior

Journal

SOFT MATTER
Volume 20, Issue 2, Pages 294-303

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d3sm01429k

Keywords

-

Ask authors/readers for more resources

This research presents a novel shape memory hydrogel with a remodelable permanent shape and programmable cold-induced shape recovery behavior. The hydrogel is prepared using specific treatment methods to achieve shape fixation by heating and shape recovery by cooling. Additionally, deformable devices can be obtained by assembling hydrogel blocks with different concentrations.
Most shape memory polymers apply glass transition or crystallization of domains to fix temporary shapes and shape recovery is induced by heating, which hinders their application under heat-intolerant conditions. Moreover, the permanent shapes of polymers normally cannot be altered arbitrarily after fabrication. Herein, we present a novel shape memory hydrogel with a remodelable permanent shape and programmable cold-induced shape recovery behavior. Poly(acrylic acid) (PAA) hydrogel is prepared in the presence of diethylenetriamine (DETA) and subsequently treated with calcium acetate (Ca(Ac)2). The charge-assisted hydrogen bonding between PAA and DETA imparts the hydrogel with remodelability, while the heat-induced hydrophobic aggregation of polymer chains and acetate groups results in shape fixation by heating and shape recovery by cooling. Afterwards, programmable deformable devices are obtained by assembling hydrogel blocks with different concentrations of Ca(Ac)2. This design strategy promotes the development of shape memory polymers with diverse potential applications. A self-healing hydrogel that can be stiffened with heat was designed. The synergy of self-healing and thermal hardening properties generated several interesting functions, such as programmable shape memory, impact protection and recyclability.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available