4.5 Article

Modeling single-phase transverse flows in a PWR rod bundle at low Reynolds number

Journal

NUCLEAR ENGINEERING AND DESIGN
Volume 416, Issue -, Pages -

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.nucengdes.2023.112752

Keywords

Porous media approach; Effective permeability; Inertia effects; Upscaling; CATHARE

Ask authors/readers for more resources

In normal operating conditions, the flow within a pressurized water reactor (PWR) core primarily moves in the axial direction along the fuel rods. However, in accidents situations, transverse flows can have a significant impact on the thermal-hydraulic properties of the core. This study develops macroscopic pressure drop models for different flow directions and Reynolds numbers and validates them by comparing with existing system code results.
In normal functioning conditions, the primary component of the flow within the rod bundle of a PWR core is in the axial direction, along the rods. However, in accidental situations, such as the refilling or reflooding phase during a Loss of Coolant Accident, or a Steam Line Break accident, transverse flows may significantly affect thermal-hydraulic properties in the core. Such effects have received little attention in system codes such as CATHARE, particularly in anisotropic rod structures at low Reynolds numbers. Here, we develop macroscopic pressure drop models for flows spanning from the creeping regime to unsteady vortex shedding. The averaged model is a generalized Darcy-Forchheimer equation with an apparent permeability including a rotation matrix and a non-linear dimensionless coefficient. The constitutive relations for the intrinsic permeability matrix are derived from polynomial regressions based on results obtained from microscale numerical simulations at different flow directions and Reynolds numbers. We finally test our approach in a case where transverse flow is imposed through a differential of inlet velocities and validate by comparing results from CATHARE with those obtained from a finite element toolbox.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available