4.7 Article

Zero-Field SMM Behavior Triggered by Magnetic Exchange Interactions and a Collinear Arrangement of Local Anisotropy Axes in a Linear Co3 II Complex

Journal

INORGANIC CHEMISTRY
Volume 62, Issue 49, Pages 20030-20041

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.inorgchem.3c02817

Keywords

-

Ask authors/readers for more resources

A new linear trinuclear Co(II)(3) complex has been synthesized and exhibits interesting magnetic behavior.
A new linear trinuclear Co(II)(3) complex with a formula of [{Co(mu-L)}(2)Co] has been prepared by self-assembly of Co(II) ions and the N3O3-tripodal Schiff base ligand H3L, which is obtained from the condensation of 1,1,1-tris(aminomethyl)ethane and salicylaldehyde. Single X-ray diffraction shows that this compound is centrosymmetric with triple-phenolate bridging groups connecting neighboring Co(II) ions, leading to a paddle-wheel-like structure with a pseudo-C-3 axis lying in the Co-Co-Co direction. The Co(II) ions at both ends of the Co(II)(3) molecule exhibit distorted trigonal prismatic CoN3O3 geometry, whereas the Co(II) at the middle presents an elongated trigonal antiprismatic CoO6 geometry. The combined analysis of the magnetic data and theoretical calculations reveal strong easy-axis magnetic anisotropy for both types of Co(II) ions (|D| values higher than 115 cm(-1)) with the local anisotropic axes lying on the pseudo-C-3 axis of the molecule. The magnetic exchange interaction between the middle and ends Co(II) ions, extracted by using either a Hamiltonian accounting for the isotropic magnetic coupling and ZFS or the Lines' model, was found to be medium to strong and antiferromagnetic in nature, whereas the interaction between the external Co(II) ions is weak antiferromagnetic. Interestingly, the compound exhibits slow relaxation of magnetization and open hysteresis at zero field and therefore SMM behavior. The significant magnetic exchange coupling found for [{Co(mu-L)}(2)Co] is mainly responsible for the quenching of QTM, which combined with the easy-axis local anisotropy of the Co-II ions and the collinearity of their local anisotropy axes with the pseudo-C-3 axis favors the observation of SMM behavior at zero field.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available