4.6 Article

Resonant tunneling induced large magnetoresistance in vertical van der Waals magnetic tunneling junctions based on type-II spin-gapless semiconductor VSi2P4

Journal

JOURNAL OF MATERIALS CHEMISTRY C
Volume 12, Issue 2, Pages 696-705

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d3tc03040g

Keywords

-

Ask authors/readers for more resources

Rare type-II spin-gapless semiconductors (SGSs) have attracted increasing attention due to their unique spin properties. In this study, the interface contacts and spin transport properties of different devices composed of VSi2P4 ferromagnetic layers were investigated. The results show that VSi2P4 is a promising material for designing vertical van der Waals heterostructures with a giant tunnel magnetoresistance (TMR) in spintronic applications.
Rare type-II spin-gapless semiconductors (SGSs), in which electrons and holes are 100% spin polarized in different directions to the Fermi level, have attracted increasing attention. Motivated by the recent findings of type-II SGS VSi2P4 with ferromagnetic characteristics and a high Curie temperature (350 K), we investigated the interface contacts and spin transport properties of different devices composed of VSi2P4 ferromagnetic layers. It was found from the first-principles calculations combined with nonequilibrium Green's function that different potential barriers appear on the interface pinning and ultimately determine the conductive characteristics. The T-MoTe2/VSi2P4/H-MoTe2/VSi2P4/T-MoTe2 device (1H device) shows a large tunnel magnetoresistance (TMR) of 3.35 x 10(3)% resulting from the interfacial spin filtering, and the T-MoTe2/H-MoTe2/VSi2P4/H-MoTe2/VSi2P4/H-MoTe2/T-MoTe2 device (3H device) accompanied with many resonant states presents increased TMR (1.83 x 10(4)%). The transport properties of two devices are explained from the spin-dependent band structures, local density of states, transmission coefficients and eigenstates. These results indicate that VSi2P4 is a promising material for designing vertical van der Waals (vdW) heterostructures with a giant TMR in spintronic applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available