4.6 Article

Facile one-pot synthesis of flower-like ellagic acid microparticles incorporating anti-microbial peptides for enhanced wound healing

Journal

JOURNAL OF MATERIALS CHEMISTRY B
Volume 12, Issue 2, Pages 500-507

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d3tb02016a

Keywords

-

Ask authors/readers for more resources

This study presents a one-pot synthesis method for flower-like AMPs@EAMP particles by combining antimicrobial peptides with ellagic acid, offering enlarged surface area, excellent biocompatibility, and broad-spectrum antibacterial activity. In vivo studies indicate their potential for tissue repair and immune barrier reconstruction.
Anti-microbial peptides (AMPs) have gained significant attention as potential antimicrobial agents due to their cytocompatibility and reduced drug resistance. However, AMPs often suffer from low stability due to their vulnerable molecular structure. This study presents a one-pot synthesis method for ellagic acid (EA)-based, flower-like AMPs@EAMP particles, combining the antibacterial properties of EA with AMPs. The resulting particles exhibit an enlarged surface area for the adsorption or embedding of AMPs, enhancing their antibacterial efficacy. Furthermore, in vitro evaluations demonstrate excellent biocompatibility and broad-spectrum activity against bacterial strains including both Gram-positive S. epidermidis and Gram-negative E. coli. In vivo studies indicate AMPs@EAMPs' potential to reconstruct the immune barrier, inhibit pathogens, and reduce inflammation, promoting orderly tissue repair. This innovative synthesis strategy provides a straightforward and effective approach for large-scale production of flower-like AMPs@EAMP particles with remarkable antibacterial properties, addressing the challenges associated with MDR infections. Flower-like microparticles, AMPs@EAMPs, effectively combine antimicrobial peptides with ellagic acid, offering long-term antibacterial activity, biocompatibility, and potential for tissue repair and immune barrier reconstruction.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available