4.7 Article

A Hierarchical Graph V-Net With Semi-Supervised Pre-Training for Histological Image Based Breast Cancer Classification

Journal

IEEE TRANSACTIONS ON MEDICAL IMAGING
Volume 42, Issue 12, Pages 3907-3918

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TMI.2023.3317132

Keywords

Breast cancer classification; digital pathology; semi-supervised learning; graph neural network

Ask authors/readers for more resources

A novel hierarchical Graph V-Net approach is proposed for breast cancer classification, which integrates patch-level pre-training and context-based fine-tuning using a hierarchical graph network. Experimental results demonstrate the superiority of our proposed method in classifying breast cancer.
Numerous patch-based methods have recently been proposed for histological image based breast cancer classification. However, their performance could be highly affected by ignoring spatial contextual information in the whole slide image (WSI). To address this issue, we propose a novel hierarchical Graph V-Net by integrating 1) patch-level pre-training and 2) context-based fine-tuning, with a hierarchical graph network. Specifically, a semi-supervised framework based on knowledge distillation is first developed to pre-train a patch encoder for extracting disease-relevant features. Then, a hierarchical Graph V-Net is designed to construct a hierarchical graph representation from neighboring/similar individual patches for coarse-to-fine classification, where each graph node (corresponding to one patch) is attached with extracted disease-relevant features and its target label during training is the average label of all pixels in the corresponding patch. To evaluate the performance of our proposed hierarchical Graph V-Net, we collect a large WSI dataset of 560 WSIs, with 30 labeled WSIs from the BACH dataset (through our further refinement), 30 labeled WSIs and 500 unlabeled WSIs from Yunnan Cancer Hospital. Those 500 unlabeled WSIs are employed for patch-level pre-training to improve feature representation, while 60 labeled WSIs are used to train and test our proposed hierarchical Graph V-Net. Both comparative assessment and ablation studies demonstrate the superiority of our proposed hierarchical Graph V-Net over state-of-the-art methods in classifying breast cancer from WSIs. The source code and our annotations for the BACH dataset have been released at https://github.com/lyhkevin/Graph-V-Net.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available