4.6 Article

Construction of a molecularly imprinted fluorescent sensor based on an amphiphilic block copolymer-metal-organic framework for the detection of oxytetracycline in milk

Journal

ANALYTICAL METHODS
Volume 16, Issue 2, Pages 196-204

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d3ay01567j

Keywords

-

Ask authors/readers for more resources

Metal-organic frameworks (MOFs) are effective carriers for molecular imprinting, but their poor dispersibility in aqueous solution is a significant drawback. In this study, we have applied amphiphilic block copolymers and molecularly imprinted technology on MOFs to improve the hydrophilicity of molecularly imprinted fluorescent materials.
A metal-organic framework (MOF) is a good carrier for molecular imprinting due to its high surface area and strong adsorption capacity, but its poor dispersibility in aqueous solution is one of the significant drawbacks, which can severely impede its effectiveness. Amphiphilic block copolymers are good hydrophilic materials and have the potential to overcome the shortcomings of MOFs. In order to improve the hydrophilicity of molecularly imprinted fluorescent materials, we have applied a combination of molecularly imprinted technology and amphiphilic block copolymers on MOFs for the first time. Amphiphilic PAVE copolymer is selected as the molecular imprinted functional monomer to improve the hydrophilicity of UiO-66-NH2. The synthesized PAVE-MOF-MIP has adequate water dispersion ability and fluorescence activity. When encountering oxytetracycline, PAVE-MOF-MIP will produce fluorescence quenching, it is used to construct a fluorescence detection platform for oxytetracycline detection. Compared with traditional MIP@MOF, PAVE-MOF-MIP has better water dispersion ability and detection accuracy. Under optimal conditions, the linear range of oxytetracycline detection is 10-100 mu mol L-1, and the minimum limit of detection (LOD) is 86 nmol L-1. This paper proposes a novel approach to use amphiphilic block copolymers as molecularly imprinted monomers on MOFs, providing an innovative idea that has not been previously explored. A metal-organic framework is a good carrier for molecular imprinting as its high surface area and strong adsorption capacity, but its poor dispersibility in solution is one of the significant drawbacks, which can severely impede its effectiveness.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available