4.3 Review

Practical Guide to Measuring Wetland Carbon Pools and Fluxes

Journal

WETLANDS
Volume 43, Issue 8, Pages -

Publisher

SPRINGER
DOI: 10.1007/s13157-023-01722-2

Keywords

Accretion; Accumulation; Biomass; Bulk density; Carbon cycling; Chambers; Core; Decomposition; Dissolved gas; Dissolved organic carbon; Eddy covariance; Greenhouse gas; Groundwater; Hydrology; Incubation; Lateral transport; Litter; Methane; Methods; Microbes; Models; Net primary productivity; Plants; Porewater; Radiometric dating; Remote sensing; Sediment; Soil organic carbon; Water; Vegetation

Ask authors/readers for more resources

Wetlands have a significant impact on global carbon sequestration, CO2 and methane emissions, and aquatic carbon fluxes. However, measuring wetland carbon is challenging due to the complexity and dynamism of the underlying biogeochemical processes. This review summarizes common and cutting-edge approaches for quantifying wetland carbon pools and fluxes, providing insights into measurement components, spatial and temporal representation, implementation considerations, and ancillary measurements.
Wetlands cover a small portion of the world, but have disproportionate influence on global carbon (C) sequestration, carbon dioxide and methane emissions, and aquatic C fluxes. However, the underlying biogeochemical processes that affect wetland C pools and fluxes are complex and dynamic, making measurements of wetland C challenging. Over decades of research, many observational, experimental, and analytical approaches have been developed to understand and quantify pools and fluxes of wetland C. Sampling approaches range in their representation of wetland C from short to long timeframes and local to landscape spatial scales. This review summarizes common and cutting-edge methodological approaches for quantifying wetland C pools and fluxes. We first define each of the major C pools and fluxes and provide rationale for their importance to wetland C dynamics. For each approach, we clarify what component of wetland C is measured and its spatial and temporal representativeness and constraints. We describe practical considerations for each approach, such as where and when an approach is typically used, who can conduct the measurements (expertise, training requirements), and how approaches are conducted, including considerations on equipment complexity and costs. Finally, we review key covariates and ancillary measurements that enhance the interpretation of findings and facilitate model development. The protocols that we describe to measure soil, water, vegetation, and gases are also relevant for related disciplines such as ecology. Improved quality and consistency of data collection and reporting across studies will help reduce global uncertainties and develop management strategies to use wetlands as nature-based climate solutions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available