4.6 Article

Irradiation Induces Gasdermin E-Triggered Tumor Immunity to Inhibit Esophageal Carcinoma Cell Survival

Journal

ACS OMEGA
Volume 8, Issue 49, Pages 46438-46449

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsomega.3c03791

Keywords

-

Ask authors/readers for more resources

Gasdermin E (GSDME) mediates pyroptosis and activates immunogenic cell death (ICD) in esophageal carcinoma cells, inhibiting cell survival.
Gasdermin E (GSDME), an executor of pyroptosis, can be activated by caspase-3 and has been recognized as a tumor suppressor in various human cancers. In addition, caspase-3/GSDME signal-induced pyroptosis is a form of immunogenic cell death (ICD). In this study, we aimed to understand the association between radiotherapy and caspase-3/GSDME signal-related ICD in esophageal carcinoma (EC) cells. The expression of caspase-3 and GSDME in two EC cell lines, ECA-109 and KYSE-150, was silenced or overexpressed by transfection with specific siRNAs or overexpression vectors. Cells were subjected to 0-8 Gy irradiation, and cell death was evaluated by CCK-8 assay, annexin V-FITC staining, lactate dehydrogenase (LDH) detection kit, Western blotting, and immunofluorescence. Irradiation in both EC cell lines promoted dose-dependent viability loss and apoptosis. More specifically, 8 Gy X-ray increased the apoptosis rate from 4.1 to 12.8% in ECA-109 cells and from 4.6 to 21.1% in KYSE-150 cells. In irradiated EC cells, the levels of LDH release and caspase-3/GSDME cleavage were increased. Caspase-3 silencing inhibited irradiation-induced GSDME cleavage and EC cell death. Furthermore, we identified the death of EC cells suppressed by caspase-3 siRNA, and the levels of CRT, HMGB1, HSP70, and HSP90 were also markedly downregulated by caspase-3 siRNA. Similarly, GSDME silencing diminished irradiation-induced EC cell death and the levels of ICD markers. Overexpression of caspase-3 and GSDME accelerated irradiation-induced ICD. In summary, irradiation in EC cells induces GSDME-mediated pyroptosis and activates ICD to inhibit esophageal carcinoma cell survival.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available