4.6 Review

Recent advances of bifunctional electrocatalysts and electrolyzers for overall seawater splitting

Journal

JOURNAL OF MATERIALS CHEMISTRY A
Volume 12, Issue 2, Pages 634-656

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d3ta06083g

Keywords

-

Ask authors/readers for more resources

This review provides a comprehensive analysis of the progress and challenges in the field of bifunctional electrocatalysts and efficient electrolyzers for seawater splitting. It summarizes recent advancements and proposes future perspectives for highly efficient bifunctional electrocatalysts and electrolyzers.
As a promising method for hydrogen (H2) production, seawater electrolysis has gained increasing attention as seawater is the most abundant water resource on Earth. The development of high-performance bifunctional electrocatalysts that facilitate both hydrogen evolution reaction and the oxygen evolution reaction and efficient electrolyzers are the key factors for H2 production from seawater. This review endeavors to provide a comprehensive analysis of the progress and challenges associated with bifunctional electrocatalysts for seawater splitting, along with efficient electrolyzers. We start with a brief overview of the fundamental aspects, including the involved reaction mechanisms and the evaluation parameters relevant to bifunctional electrocatalysts for seawater splitting. Subsequently, recent advancements in bifunctional electrocatalysts and electrolyzers designed for overall seawater splitting are summarized and discussed. Finally, we propose perspectives for the future development of highly efficient bifunctional electrocatalysts and electrolyzers for seawater splitting. This review summarizes advances in bifunctional electrocatalysts and electrolyzers for seawater splitting, including various catalysts (e.g., phosphides, chalcogenides, borides, nitrides, and (oxy)hydroxides) and membrane-based/membrane-less systems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available