4.7 Article

Phosphate deficiency responsive TaSPX3 is involved in the regulation of shoot phosphorus in Arabidopsis plants

Journal

PLANT PHYSIOLOGY AND BIOCHEMISTRY
Volume 206, Issue -, Pages -

Publisher

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.plaphy.2023.108215

Keywords

SPX3 gene; Pi stress; PSI genes; Functional analysis

Categories

Ask authors/readers for more resources

This study cloned the full-length cDNA sequence of TaSPX3 gene in wheat and found that TaSPX3 responds to low phosphorus stress in multiple wheat genotypes. Overexpressing TaSPX3 can alleviate phosphorus deficiency symptoms and promote plant growth in Arabidopsis. The study also revealed the interaction of TaSPX3 with other genes related to the phosphorus starvation signaling pathway.
SPX (SYG/PHO81oR1) domain genes have been reported to play vital roles in the Phosphorus (Pi) signaling network in Arabidopsis thaliana and rice. However, the functions of SPX proteins in wheat remain largely unknown. In this study, the full-length cDNA sequence of the TaSPX3 gene was cloned from the common wheat variety Zhengmai9023. The expression of TaSPX3 was up-regulated in eight different genotypes of wheat under low phosphorus (LP) stress, indicating that TaSPX3 responds to Pi limitation in multiple wheat genotypes. The transcription level of TaSPX3 was also detected in the absence of seven different elements, showing certain specificity for Pi deficiency in wheat. Over expressing TaSPX3 in Arabidopsis can alleviate Pi deficiency symptoms at the seedling stage and promote the growth of plant, and advance the flowering period at the adult stage. The expression of 7 genes associated with the Pi starvation signal pathways was analyzed using qRT-PCR. The results showed that TaSPX3, along with AtSPX1, AtRNS1, AtIPS1, AtPAP2, AtPAP17 and AtAT4, were all induced by Pi deficiency. This study reveals that the TaSPX3 gene in wheat is involved in the response to phosphorus stress and may affect shoot phosphorus levels through AT4 or PAPs-related pathways. Overall, our study provides new insights into the regulation of plant response under LP conditions and the molecular mechanism underlying the role of the wheat SPX gene in coping with LP stress.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available