4.7 Article

Phosphate oxygen isotopes constrain Mesoproterozoic marine temperatures and the paucity of phosphorite

Journal

CHEMICAL GEOLOGY
Volume 644, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.chemgeo.2023.121831

Keywords

Apatite; Phosphate oxygen isotopes; Gaoyuzhuang formation; Xiamaling formation; North China

Ask authors/readers for more resources

Phosphorus is an essential element for life and its cycle in the ocean is closely connected with the carbon and oxygen cycles. The study of phosphate oxygen isotopes can provide insights into various reactions related to phosphorus. By analyzing carbonate fluorapatite samples from the Mesoproterozoic Era in North China, it was found that the oxygen isotope values were lower compared to modern samples, indicating a warmer climate during that time period and a potential reason for the scarcity of phosphorite.
Phosphorus (P) is an essential element for life, and the oceanic P cycle is closely coupled with the global carbon and oxygen cycles via the role of P as a limiting nutrient. Since P has only one stable isotope, tracking the P cycle through geological history is challenging. However, phosphate oxygen isotopes (delta 18Op) represent a valuable tool for deciphering various P-related reactions, such as intracellular P turnover and enzymatic P regeneration, and have been successfully applied to modern soils and marine sediments. The marine P cycle prior to the Neoproterozoic Era remains controversial due to the scarcity of phosphorite and large uncertainties in estimating seawater phosphate levels. Here, we present delta 18Op of carbonate fluorapatite (CFA) from the Mesoproterozoic Gaoyuzhuang and Xiamaling Formations in North China. Despite considerable uncertainties, the derived authigenic delta 18Op values are markedly lower than those from modern sites with similar depth and latitude, which imply a warmer climate during the Mesoproterozoic Era compared to the present day. Based on thermodynamic calculations of saturation state with respect to CFA, we suggest that the elevated temperatures could have hindered P authigenesis, partially accounting for the general absence of phosphorite in contemporaneous successions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available