4.7 Article

Dual-path network combining CNN and transformer for pavement crack segmentation

Journal

AUTOMATION IN CONSTRUCTION
Volume 158, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.autcon.2023.105217

Keywords

Pavement crack detection; Semantic segmentation; Convolutional neural network; Vision transformer; Deep learning

Ask authors/readers for more resources

This study presents a dual-path network for pavement crack segmentation, combining Convolutional Neural Network (CNN) and transformer. A lightweight CNN encoder is used for local feature extraction, while a novel transformer encoder integrates high-low frequency attention mechanism and efficient feedforward network for global feature extraction. Additionally, a complementary fusion module is introduced to aggregate intermediate features extracted from both encoders. Evaluation on three datasets confirms the superior performance of the proposed network.
Cracks are one of the most common pavement surface diseases. Timely repair of these cracks is imperative to prevent a substantial reduction in the pavement's service life. However, the persistent challenges in crack segmentation arise from factors such as thin and shallow crack characteristics, a cluttered background, and foreground distractors. In response to these challenges, a dual-path network for pavement crack segmentation is introduced, leveraging a synergistic combination of Convolutional Neural Network (CNN) and transformer. First, the proposed approach involves a lightweight CNN encoder for local feature extraction and a novel transformer encoder integrating a fully convolutional high-low frequency attention (FCHiLo) mechanism and an efficient feedforward network for global feature extraction. Second, a complementary fusion module (CFM) is introduced to aggregate intermediate features extracted from both encoders. The multi-scale fusion outputs are systematically conveyed to the decoder, facilitating gradual image recovery and segmentation result acquisition. Evaluation on three publicly available datasets-DeepCrack, CrackForest, and CrackTree 260-affirms the superior performance of the proposed network compared to ten established models.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available