4.6 Article

Feasibility study on energy harvesting with thermoelectric generators in a photovoltaic-ground source heat pump system

Journal

ENERGY REPORTS
Volume 11, Issue -, Pages 71-82

Publisher

ELSEVIER
DOI: 10.1016/j.egyr.2023.11.023

Keywords

Thermoelectric generator; Energy harvesting; Feasibility study; Hybrid system; Generated electricity

Categories

Ask authors/readers for more resources

Thermoelectric generators (TEGs) utilize temperature differences to produce electricity and have potential for various industrial applications. This study introduces an advanced technique that utilizes temperature gradients in water pipes to increase power generation, with efficient modulation of output power through flow control. The feasibility evaluation in residential settings shows that TEGs can generate 10.95 kWh of electricity per unit, and to achieve zero-energy buildings, 64.5 m2 of TEG deployment is required per unit given a zT value of 1.
Thermoelectric generators (TEGs) harness temperature differences to produce electricity and hold promise for diverse industrial applications. However, their limited conversion efficiency casts doubt on their role in achieving energy independence. This study introduces an advanced technique that exploits temperature gradients in water pipes, utilizing supplementary TEGs to augment power generation. This method maintains a stable temperature gradient for TEG operation. Additionally, TEG power output can be efficiently modulated via flow control. In the feasibility evaluation for residential settings, the temperature fluctuations across each system unit were analyzed. In the active system, the chosen sites for TEG integration were units equipped to manage heat transfer using working fluids. The inlet and outlet temperatures were calculated for photovoltaic-thermal (PVT) systems, ground heat exchangers (GHEs), and heat storage tanks (HSTs). The electricity produced by the TEGs was benchmarked against their conversion efficiency, zT. The results indicated that the TEGs yielded 10.95 kWh of electricity when systematically implemented in each unit. To realize a zero-energy building, an area of 64.5 m2 per unit is necessitated for TEG deployment, given a zT value of 1.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available