4.1 Article Data Paper

Dataset from transcriptome profiling of Musa resistant and susceptible cultivars in response to Fusarium oxysporum f.sp. cubense race1 and TR4 challenges using Illumina NovaSeq

Journal

DATA IN BRIEF
Volume 52, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.dib.2023.109803

Keywords

Banana; Fusarium oxysporum f.sp. cubense; Transcriptome; Gene-expression; Annotation; Illumina sequencing

Ask authors/readers for more resources

This study focused on analyzing the differential gene expression patterns of Musa spp. during the response to Fusarium oxysporum f.sp. cubense (Foc) infection. RNAseq data from resistant and susceptible cultivars were collected at different time intervals, and extensive analysis including GO, KOG, KEGG pathway analysis, as well as SSRs, SNPs, and miRNA investigations were conducted. The dataset was carefully curated and made accessible for further research.
In this investigation, the study focused on the RNAseq data generated in response to Fusarium oxysporum f.sp. cubense (Foc) race1 (Cavendish infecting strain VCG 0124), targeting both resistant (cv. Rose, AA) and susceptible cultivars (Namarai, AA), and Tropical Race 4 (TR4, strain VCG 01213/16), involving resistant (cv. Rose, AA) and susceptible cultivars (Matti, AA). The respective contrasting cultivars were independently challenged with Foc race1 and TR4, and the root and corm samples were collected in two replications at varying time intervals [0th (control), 2nd, 4th, 6th, and 8th days] in duplicates. The RNA samples underwent stringent quality checks, with all 80 samples meeting the primary parameters, including a satisfactory RNA integrity number ( > 7). Subsequent library preparation and secondary quality control steps were executed successfully for all samples, paving the way for the sequencing phase. Sequencing generated an extensive amount of data, yielding a range of 10 to 31 million paired-end raw reads per sample, resulting in a cumulative raw data size of 11-50 GB. These raw reads were aligned against the reference genome of Musa acuminata ssp. malaccensis version 2 (DH Pahang), as well as the pathogen genomes of Foc race 1 and Foc TR4, using the HISAT2 alignment tool. The focal point of this study was the investigation of differential gene expression patterns of Musa spp. upon Foc infection. In Foc race1 resistant and susceptible root samples across the designated day intervals, a significant number of genes displayed up-regulation (ranging from 1 to 228) and down-regulation (ranging from 1 to 274). In corm samples, the up-regulated genes ranged from 1 to 149, while down-regulated genes spanned from 3 to 845. For Foc TR4 resistant and susceptible root samples, the expression profiles exhibited a notable up-regulation of genes (ranging from 31 to 964), along with a down-regulation range of 316-1315. In corm samples, up-regulated genes ranged from 57 to 929, while down-regulated genes were observed in the range of 40-936. In addition to the primary analysis, a comprehensive secondary analysis was conducted, including Gene Ontology (GO), euKaryotic Orthologous Groups (KOG) classification, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, and investigations into Simple Sequence Repeats (SSRs), Single Nucleotide Polymorphisms (SNPs), and microRNA (miRNA). The complete dataset was carefully curated and housed at ICAR-NRCB, Trichy, ensuring its accuracy and accessibility for the duration of the study. Further, the raw transcriptome read datasets have been successfully submitted to the National Center for Biotechnology Information -Sequence Read Archive (NCBI-SRA) database, ensuring the accessibility and reproducibility of this valuable dataset for further research endeavors (c) 2023 Published by Elsevier Inc. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ )

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available