4.7 Article

Modulation of electronic and optical properties of BlueP/MoSSe heterostructures via biaxial strain and vertical electric field

Journal

RESULTS IN PHYSICS
Volume 56, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.rinp.2023.107193

Keywords

First-principles; BlueP/MoSSe vdWHs; Biaxial strain; Vertical electric field; Optical absorption

Ask authors/readers for more resources

Constructing van der Waals heterostructures is an efficient approach to enhance the properties and broaden the applications of two-dimensional materials. This study explores the structure, stability, electronic, and optical properties of BlueP/MoSSe heterostructures using density functional theory calculations. It is found that the bandgap and band edge of these heterostructures can be effectively modulated by strain and electric field.
Constructing van der Waals heterostructures (vdWHs) is an efficient approach for enhancing the desirable properties of two-dimensional (2D) materials and greatly expanding the range of applications of the original monolayer materials. The structure, stability, electronic and optical properties of BlueP/MoSSe heterostructures are explored by density functional theory (DFT) calculations. The different configurations of BlueP/MoSSe vdWHs are all indirect bandgap semiconductors and have similar energy band structures, with the bandgap of about 1.0 eV under the PBE method. The bandgap of the A3 (B3) configuration calculated with HSE06 method is 1.608 (1.377) eV. The A3 configuration exhibits type-II band alignment while the B3 configuration shows type-I band alignment, both of which have high stability. The bandgap and band edge of A3 (B3) configuration can be modulated effectively by biaxial strain and vertical electric field (Efield). The BlueP/MoSSe vdWHs have broader absorption range and higher absorption intensity than their monolayers. The optical absorption intensity of heterostructures is gradually improved with increasing compressive strain, and the optical absorption spectrum is red-shifted under tensile strain. We hope that our findings will provide meaningful theoretical guidance for the preparation and potential application of BlueP/MoSSe vdWHs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available