4.7 Article

Plasmon-induced immobilization of xanthene chemosensors toward repurposing as SERS nanotags

Journal

SURFACES AND INTERFACES
Volume 44, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.surfin.2023.103647

Keywords

SERS; Xanthene-based chemosensor; SERS nanotags; Plasmon-induced charge transfer; Ion-sensing

Ask authors/readers for more resources

Surface-enhanced Raman spectroscopy (SERS) is a powerful tool in biophysics, bioanalytical chemistry, and biomedicine for monitoring extracellular chemical activity. However, the limited choice of SERS nanotags has hindered its practical application. This study repurposes fluorescent chemosensors as SERS nanotags, using a plasmon-induced reaction to immobilize them onto plasmonic nanostructures. The results demonstrate the successful immobilization and functionality of xanthene-based chemosensors as SERS chemosensors.
Surface-enhanced Raman spectroscopy (SERS) has emerged as a powerful tool in biophysics, bioanalytical chemistry, and biomedicine due to its unique ability to monitor extracellular chemical activity using fiber optics and multiplexed detection, which are essential for the study of complex biological systems. However, the exceptionally limited choice of SERS nanotags has hindered the practical application of SERS sensing in the fields. Enormous efforts and time are needed to develop new nanotag lines from ab initio for different targeted analytes. This study is inspired by the extensive range of fluorescent chemosensors already in use for various applications and takes a pioneering step toward repurposing them as the SERS nanotags. More specifically, this study explores the potential of plasmon-induced aromatic radical substitution reaction to immobilize xanthenebased chemosensors onto plasmonic nanostructures using a chemical linker without pre-modifying the chemical structures of the chemosensors or compromising the functionality of their binding groups towards specific analytes. Using this proposed method, we immobilize two primary xanthene-based chemosensors and demonstrate their functionality as SERS chemosensors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available